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Abstract

The Lagrange expansion, which may be used to derive the Fokker-
Planck equation, is here used to derive the corresponding expressipn
for the flux of particles subject to a stochastic scattering process.
The coefficients which occur in this expression are, in general, not
the same as the coefficients which occur in the Fokker-Planck equa-
tion itself. In the special case that the particle distribution
involves only one independent variable, the particle flux is deter-
mined by the familiar Fokker-Planck coefficients., Evaluation of
particle flux is of special interest in the study of stochastic

acceleration.



The behavior of particles moving under the influence of random
force fields is of interest in astrophysics. One example is the heating
and diffusion of charged particles in the solar wind (Barnes, 1967;
Jokipii 1966), and another is the acceleration of charged particles by
the Fermi-type process of stochastic acceleration (Hall and Sturrock,
1967; Melrose, 1969; Tsytovich, 1966). Under conditions which are nor-
mally accepted, such a process may be represented by a Fokker-Planck
equation, which gives the formula for the time derivative of the particle
distribution function. However, in interpreting various solutions of
this equation, it is helpful to know the flux of particles--in real space,
momentum space, or in energy, as is appropriate to the problem. The for-
mula for the particle flux is simple, but appears not to be widely known,
This paper therefore gives a brief derivation of this formula.

In an earlier publication (Sturrock, 1960; hereafter called paper I),
it was shown that the Fokker-Planck equation may conveniently be derived
from a generalization of the Lagrange expansion., This publication also
presented a formula for particle flux, so it offers a convenient starting
point for this paper.

We consider the distribution of particles in a space enumerated by
variables X r=1, ..., n., These may be spatial coordinates, compo-
nents of velocity or momentum, or any combination thereof. The distri-
bution function f(x,t) has the property that f(x,t)dnx is the number
of particles in the volume dnx centered on the position x at time t.
If, with the requirement that dx be small compared with the scale deter-
mined by the gradient of £, f dnx is not a large number, it is necessary
to interpret this number as an 'expectation” value.

If, when t changes to t + At, the particle which was at position
X moves to position x + Ax, the distribution function at time t + At

is related to that at time t by the Lagrange expansion. An appropriate
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change of notation of equation (3.6) of paper I leads'to
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(1)
The Fokker-Planck equation is derived from equation (1) by assuming
that one may choose the time interval At such that (a) the distribution
function f changes only slightly in this time; (b) the associated values
of Axr are small compared with the scale determined by the gradient of
i and»(c) that a large number of random processes occur in this time

with the result that
<bx >= 0(At), <Ax Ax > = o(At), < Ax Ax Ax > = o(At), etc. (2)
where angular brackets denote the expectation value of a quantity. When

the time interval At is chosen in this way, equation (1) takes the

usual form of the Fokker-Planck equation:

Ax Ax
2o (@) eam () 0 o

Note that the term Axr/At may represent the effect of a small steady

force field as well as that of a randomly fluctuating force field.
We now wish to obtain an expression for the flux Fr’ the deri-
vation of which is to be analogous to the derivation of equation (3).
The same change of notation in equation (3.9) of paper I gives

the following expression for the averaged flux:

Ax d Ax
Fr <At> a:a: (f<dt - Axs>) (4)




We see that, although the first term on the right-hand side of equation
(4) also appears in the Fokker-Planck equation (equation 3), the second

term does not. Nevertheless, we may confirm that the continuity equa-

tion

T (5)
r

is equivalent to equation (3).

For this purpose, it is convenient to rewrite the flux as

Ax
T o)
F. = f<‘5t‘> = (e ) (6)

where

]
1

dAxr
rs —<< dt AX;> : (7)

This may be expressed as

FrS = Frs + F{_’§ (8)

where Frs and Frs are symmetric and antisymmetric, respectively, in
their suffixes. The symmetric component is expressible as a total deri-

vative and may therefore be related to the second term of the Fokker-

Planck equation:

dAxr dAxS d <AXTAXS
Frs = 1/2 at AXS + AXr erS = 1/2 <a—t- (AXrAXS)> = 1/2 T) . (9)

The antisymmetric term, given by

dAxr dAxS
F{f =1/2 e Axs - Axr It s (10)

_5_




does not appear in the Fokker-Planck equation because the term

< (f Frs) is divergence free. Substitution of formula (4) into equa-

ox
s 4
tion (5) therefore yields equation (3).

We see that, in general, the particle flux cannot be expressed in

terms of the coefficients of the Fokker-Planck equation alone but in

d Ax
T

dt

addition requires coefficients of the form Ax;> , Which are

readily calculated in the same manner as the usual Fokker-Planck coeffi-
cients. An important exception to this rule is the case that the system
has only one independent coordinate. If, for instance, we are concerned

only with the energy E of particles, the Fokker-Planck equation has

the form

dr 3 AR 32 AE)Z
R (f Z‘t‘}) +1/2 .- (f (At) » (1)

and the flux (in energy) is given by

Fp = (%f—) -1/2 -g-ﬁ (f(%f—ﬁ» , (12)

with no additional terms.,

This formula is of special interest for discussion of stochastic
acceleration, since it is important to know whether a particular solu-
tion of the Fokker-Planck equation represents transfer of particles
from low energy to high energy (acceleration) or from high energy to
low energy (deceleration). This consideration has special relevance
to a recent article by Melrose (1969) as will be discussed in more

detail in a separate article ( Tademaru, Newman and Jones, 1970) .
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